Optimized Graphical Processing Unit Processing Framework for Surface Rendering in 4D Ultrasound Imaging

نویسندگان

  • R E S E A R CH AR T I C L E
  • Ahmed F. Elnokrashy
  • Marwan Hassan
  • Tamer Hosny
  • Ahmed Ali
  • Alaa Megawer
  • Amr M. Hendy
  • Yasser M. Kadah
چکیده

Four-dimensional (4D) ultrasound imaging extends the real-time capability of ultrasound to visualize a realtime volume that can be manipulated by the sonographer. Among the different visualization methods, surface rendering is a common mode for displaying volumetric datasets such as in obstetrical applications. A challenge in this mode is that surface shading is required to visualize the surface and enhances the surface contrast and this has very demanding computational requirements for 3D surfaces. Here, we present an optimized highperformance rendering pipeline based on four stages for preprocessing, volume rendering, surface shading, and postprocessing. The new approach is implemented to render volumes acquired on a 4D commercial ultrasound imaging system to illustrate its practicality. The results demonstrate diagnostic quality of rendered volumes at a computational time cost that is suitable for 4D real-time processing. Given its low cost of required hardware, the new pipeline has potential for making 4D imaging systems more affordable while maintaining diagnostic quality and performance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Signal Processing Overview of Ultrasound Systems for Medical Imaging-White Paper

This white paper provides a description of ultrasound imaging systems with focus on the signal processing strategies. The different system components are briefly discussed followed by a description of ultrasound related peculiarities that the system needs to handle. The system processing for B-mode imaging can be roughly divided into three components: the front end (that includes transmission, ...

متن کامل

Segmentation Assisted Object Distinction for Direct Volume Rendering

Ray Casting is a direct volume rendering technique for visualizing 3D arrays of sampled data. It has vital applications in medical and biological imaging. Nevertheless, it is inherently open to cluttered classification results. It suffers from overlapping transfer function values and lacks a sufficiently powerful voxel parsing mechanism for object distinction. In this work, we are proposing an ...

متن کامل

Parallel implementation of underwater acoustic wave propagation using beamtracing method on graphical processing unit

The mathematical modeling of the acoustic wave propagation in seawater is the basis for realizing goals such as, underwater communication, seabed mapping, advanced fishing, oil and gas exploration, marine meteorology, positioning and explore the unknown targets within the water. However, due to the existence of various physical phenomena in the water environment and the various conditions gover...

متن کامل

Real-Time 4D Ultrasound Mosaicing and Visualization

Intra-cardiac 3D ultrasound imaging has enabled new minimally invasive procedures. Its narrow field of view, however, limits its efficacy in guiding beating heart procedures where geometrically complex and spatially extended moving anatomic structures are often involved. In this paper, we present a system that performs electrocardiograph gated 4D mosaicing and visualization of 3DUS volumes. Rea...

متن کامل

Fast Cellular Automata Implementation on Graphic Processor Unit (GPU) for Salt and Pepper Noise Removal

Noise removal operation is commonly applied as pre-processing step before subsequent image processing tasks due to the occurrence of noise during acquisition or transmission process. A common problem in imaging systems by using CMOS or CCD sensors is appearance of  the salt and pepper noise. This paper presents Cellular Automata (CA) framework for noise removal of distorted image by the salt an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014